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The similarity equations for rotationally symmetric flow above an infinite 
counter-rotating disk are investigated both numerically and analytically. 
Numerical solutions are found when a, the ratio of the disk’s angular speed to 
that of the rigidly rotating fluid far from it, is greater than -0.68795. It is 
deduced that there exists a critical value a,, of a above which finite solutions are 
possible. The value of a,,, and the limiting structure as a + a,, are found using the 
method of matched asymptotic expansions. The flow structure is found to consist 
of a thin viscous wall region above which lies a thick inviscid layer and yet 
another viscous transition layer. Furthermore, this structure is not unique: there 
can be any number of thick inviscid layers, each separated from the next by a 
viscous transition layer, before the outer boundary conditions on the solution are 
satisfied. However, comparison with the numerical solutions indicates that  a 
single inviscid layer is preferred. 

1. Introduction 
The structure of the self-similar solutions of the steady incompressible 

Navier-Stokes equations for a rigidly rotating fluid bounded by an infinite 
rotating disk has been examined for special cases by von K&rm&n (1921), 
Bodewadt (1940), Batchelor (1951) and Rogers & Lance (1960). More recently 
Evans (1 969) has obtained numerical solutions of the similarity equations for 
values of the parameter a, the ratio of the disk’s angular speed to that of the 
rigidly rotating fluid far from it, in the ranges -m < a 6 -6.211 and 
- 0.65 < a 6 0. For values of a in the range - 6.211 < a < - 0.65 the numerical 
method employed by Evans would not yield solutions unless suction was applied 
at the disk. 

Ockendon (1 972), using asymptotic methods, has found a complete first-order 
solution of the similarity equations for small values of a suction parameter when 
- co < a c - 0.6968 which agrees well with the numerical results of Evans. 
Furthermore, her results confirm the non-existence of a finite solution without 
suction for a = - I ,  which was rigorously proved by McLeod (1970). I n  addition 
it has been shown by Bodonyi (1973) that a steady solution is not possible as the 

t Present address : Department of Aerospace and Ocean Engineering, Virginia 
Polytechnic Institute and State University, Blacksburg. 
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large-time limit of the time-dependent solution of the unsteady similarity 
equations for a = - 1. 

These results are especially interesting if one recalls that Evans could not 
obtain numerical solutions for - 6.211 < a < - 0.65. Since the similarity equa- 
tions have no solution when a = - 1, the question naturally arises as to the range 
of values of c1 for which this non-existence of solutions holds. 

In  this paper further numerical solutions of the similarity equations will be 
given, and the limiting value of a for which solutions exist will be deduced. In  
addition the structure of the flow field in the vicinity of the breakdown will be 
discussed. 

2. Equations of motion 
The governing differential equations for steady incompressible flow above an 

infinite rotating disk are readily obtained from the axisymmetric Navier-Stokes 
equations written in cylindrical co-ordinates (r,  6 , ~ ) .  If u, v and w represent the 
velocity components in the r ,  0 and z directions, respectively, then following 
von K&rm&n (1921), similarity solutions are sought in the non-dimensional form 

(2.1) i M Y ,  2) = (vQ)* xf(y), 4 r ,  z )  = (vQZ)i xg(y), 

Wb-7 2) = - 2(vQ)*f(y), p(r ,  z )  = P"Q(*X2 + h(y)), 

r = ( v /Q)*x ,  z = ( v / Q ) i  y, 

where u is the kinematic viscosity and w and Q are the angular speeds of the disk 
and fluid far from it, respectively. With this choice of variables the Navier- 
Stokes equations reduce to 

f"+2ff"-f'"gs"- 1 = 0, (2.2) 

(2.3) 

(2.4) 

g" + 2fg' - 2gf' = 0, 

h' + 2(f"' + 2f " = 0, 

where the primes denote differentiation with respect to y. It is also of interest 
to note that these equations are identical to those derived from boundary-layer 
theory, the reason being that the terms neglected by the usual boundary-layer 
arguments are identically zero for the choice of variables given in (2.1). 

To complete the formulation of the boundary-value problem the appropriate 
boundary conditions must also be specified. At the disk the no-slip condition 
applies, so that u = w = 0 and v = wr. Far from the disk the fluid is assumed to be 
rigidly rotating with angular speed 0. In  view of the definitions (2.1) these 
conditions are equivalent to 

f = f ' = O ,  g = a  a t  y = O ,  (2 .5 )  

f'+O, g+1, h+O as y-foo, (2.6) 
where a = w/Q. 

are first found from (2.2) and (2.3), and then h can be determined from 
The pressure term h(y) is uncoupled from the equations for f and g, thus f and g 
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f’ = r - lu 

FIGURE 1. Transformed radial velocity for various a. 0, equation (4.23). 

3. Numerical solutions 
As mentioned previously, numerical solutions of the similarity equations for 

various values of the parameter a have been obtained by both Rogers & Lance 
(1 960) and Evans (1 969). For values of a 3 0 no difficulties were encountered in 
obtaining solutions. For a counter-rotating disk (a  < 0), however, Rogers & 
Lance were unable to find acceptable solutions, and Evans, using a shooting 
technique, was able to find solutions only when a 2 - 0-65 and a < - 6.21 1 .  

In  order to study the behaviour of the similarity equations in the vicinity of 
a = -0.65 more closely further numerical integrations of the equations were 
carried out. The governing equations were written in their finite-difference form 
using centred differences, and the resulting nonlinear difference equations were 
solved recursively assuming initial approximations for f’ and g .  Only the results 
of the numerical computations will be presented here. A complete discussion of 
the numerical method is given by Bodonyi (1973). 

Numerical solutions of (2.2) and (2.3) were found for values of a ranging 
between + 1.0 and - 0.68795. The results for a 2 0 agree well with those of 
Rogers & Lance and Evans and, therefore, will not be discussed further. With 
step sizes A y  = 0.05 and 0.135 and the condition y-tcc approximated by y = 20, 
the solutions obtained for - 0.65 < a < 0 agree favourably with those of Evans. 
In  addition the method used in this study permitted new solutions for 
- 0.68795 < a < - 0.65 to be found; and the resulting solutions clearly indicate 
that there is a critical value a,, of a such that solutions exist for a > a,, but do 
not exist for a = acr. From the analysis to be discussed below it will be shown 
that this crit,ical value a,, is - 0.6968. 

Figures 1 and 2 show the transformed radial and tangential velocity profiles 
for several values of a while figure 3 shows the behaviour of the transformed 
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FIGURE 2. Transformed tangential velocity for various u. 0, equation (4.24). 
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FIGURE 3. Transformed stream function for various a. 

stream function for the same values of a. It may be clearly seen from these figures 
that the amplitudes of all the velocity components are becoming unbounded as 
a-+a,,, suggesting that no finite solution exists for a = a,,. 

Further evidence for the breakdown of the similarity equations as a+a,, is 
given in table 1 and figure 4, in which the radial and tangential wall shears are 
given as functions of a and were obtained by performing an h2-extrapolation on 
the numerical solutions, The singuIar behaviour of the wall shears is apparent 
only for values of a quite close to a,,, and even then only the radial wall shear 
strongly shows the presence of the singularity. 
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FIGURE 4. Transformed radial and tangential wall shears as functions of a. 
0, -u ’ (Q;  a); 0, g ’ ( Q ;  a). 

4. Limiting structure as a +acr 
The singular behaviour of the numerical solutions as a approaches its critical 

value suggests that asymptotic methods for small values of the parameter a - a,, 
may be useful in deducing both the critical value of a and the limiting structure 
of the flow field. The asymptotic analysis to be discussed follows that used by 
Ockendon (1972) to study the flow above an infinite rotating disk when a small 
amount of suction is applied at the surface. 

Inner regian 

Near the surface of the disk there is a thin layer of fluid where the viscous and 
inertia terms balance. To examine this region the normal co-ordinate y is 
stretched as follows: 

6 = d y .  (4.1) 

The dependent variables are scaled according to 

f ( Y )  = 4 f 0 ( 6 )  + Cfi(6) + * **I ,  

g(Y)  = go(!5) + %(6) + . . . 7  

where 8 = a-a,, 
and a,, is to be found. 



662 R. J. Bodonyi 

CL 

0~00000 
- 0~10000 
- 0~20000 
- 0.30000 
- 0.40000 
- 0.50000 
- 0.55000 
- 0.60000 
- 0.64000 
- 0.65000 
- 0.66000 
- 0.66437 
- 0.67040 
- 0.67748 
- 0.68223 
- 0.68555 
- 0.68795 

Y(0) 
- 0.93934 
- 1'04031 
- 1.15387 
- 1.29182 
- 1.48059 
- 1.79243 
- 2.16262 
- 2.68333 
- 3.81567 
- 4.33044 
- 5.08587 
- 5'54778 
- 6-39852 
- 7.97728 
- 9.77115 
- 11.79555 
- 14'06527 

g'(0) 
0.77139 
0.82251 
0.86903 
0.9 1234 
0.95622 
1.01171 
1.03259 
1.101 94 
1.19964 
1.24438 
1-30532 
1.34000 
1.40000 
1.50000 
1.60000 
1,70000 
1~80000 

f ( m )  
- 0.66939 
- 0.74470 
-0.80318 
- 0.82524 
- 0.77346 
- 0.58183 
- 0.32917 
- 0.05153 

0.33748 
0.45693 
0.59636 
0.66658 
0.77613 
0.93423 
1.07144 
1.19470 
1.30826 

TABLE 1. Transformed radial and tangential wall shears and stream function 
as y + co, as functions of a 

Substituting (4.1)-(4.4) into (2.2)-(2.3) and equating like powers of c yields 
the following set of differential equations: 

f(y+2fofi-fA2= 0, (4.5) 

go"+2fog;-2f;g, = 0, (4.6) 

(4.7) 

(4.8) 

fi" + 2fof; + 2.f; f i  - 2f;f; = 1 - g;, 

g; + ?fog; - 2f Ihl+ 2f1go - 2f ;go = 0. 

The boundary conditions at g = 0 are given by 

f o  = f A  = 0, go = a,,, 

f ,  =f; = 0, g, = 1,  

(4.9) 

(4.10) 

and as $+ 00 it is required that the solutions do not become exponentially large. 
The appropriate solution of (4.5) is found to be 

f o ( 5 )  = -@P, (4.11) 

where A is an arbitrary constant a t  this stage, although it has been shown by 
Ockenden (1972) that A must be positive if the boundary conditions on f and g 
as y-tm are to be satisfied. Thus in what follows it is assumed that A > 0. 
Substituting (4.11) into (4.6) and making a change of variables leads to a confluent 
hypergeometric equation for go(c ) ,  and hence the solution can be written as 

where &(a; b ;  t )  is the confluent hypergeometric function. 
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Using the results for fo and go given above it can be shown (see Bodonyi 1973) 
that the appropriate solution for fi(t) is given by 

where c is an arbitrary integration constant at  this stage. In particular i t  is 
found from (4.13) that 

fr(t) = ea~63( 1 - ~ / ~ x z g ; e - + ~ z 3 d x ]  -g ; ( t ) .  (4.14) 

This result shows that fi([) will become exponentially large as ;+ co unless 

or, using the change of variables 

t = Q A X 3 ,  go(%) = a&(t), 

(4.15) 

(4.16) 

The integral appearing in (4.16) has been evaluated numerically, and its value 
is 2.0596. Hence 

This number defines the lowest value of a above which finite solutions of the 
similarity equations can a.lways be found. It is not surprising, therefore, that 
numerical solutions could not be found for some values of a less than - 0.68795. 

a,, = - 0.69680.. . . 

Intermediate region 

The expansions in the inner region fail when t = O(e-t)  and the variables must 
be rescaled in order to study the intermediate region in detail. The appropriate 
scalings are given by 

y = s-47, (4.17) 

f(y) = e-*fo(q) + higher-order terms,? (4.18) 

g ( y )  = e-lgo(q) + higher-order terms. (4.19) 

Substituting these expressions into (2.2) and (2.3) and equating like powers of e 
to zero, it  is found that to first order the equations are inviscid, i.e. 

2f& -$;z + g;  = 0, (4.20) 

fog; - f ; g o  = 0. (4.21) 

The boundary conditions on fo and go as q+O are found by matching the: 
functions with the solutions in the inner region as the inner variable t-+ co. Thus 

fo--$Aq2,  f ; - - -Aq,  g , , - ~ , r 2  as T+O,  (4.22) 

t A referee has pointed out that the appropriate form of the expansion for higher-order 
terms is 

~ - * ~ , ( r l ) + ~ * f o g ( ~ ) ~ ~ , ( r l ) + ~ ~ ~ ~ ( r l ) +  * * *  * 
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where 

The solutions of (4.20) and (4.21) satisfying (4.22) are easily shown to be 

SO(7) = - h 2 4 1  - cos (q l41,  (4.23) 

%(7) = - h-41 - COS (q/h)I, (4.24) 

where h = - A/2P0 = (0*6857/a,,) A$. (4.25) 

Outer region 

The expansions fail in the intermediate region when q/h --f 2n because in this limit 
the functions f0(q) and S,(q) are both zero. In  order to continue the solution 
further the q co-ordinate must be stretched in the neighbourhood of 7 = 2hn, 
where there will be another viscous layer. The appropriate scalings for the 
variables are 

(4.26) 

(4.27) 

(4.28) 

The differential equations for this region are identical to those for the inner 

y = €42hn  + &) 
f ( Y )  = .-tGo(s) + $I(<) + . * .>> 
g(Y) = O O ( 0  + &(<) + f .  * 

(4.29) 

g0"+2j0&-2j;@0 = 0. (4.30) 

The boundary conditions for <+ - 00 are found by matching with the intermediate 
region as q -+ 2hn. The results are 

fo - fA N -A[, oo N i(A/h)c2 as [+-00. (4.31) 

A complete discussion of the boundary conditions on fo as <-+ 00 is given by 
Ockendon (1972). It will suffice here to say that there are three possible forms 
for the outer boundary condition, two of which are physically acceptable. 
Therefore the behaviour of the limiting solution as a+ a,, is not unique. In fact 
it is possible to find solutions containing any number of the thick inviscid regions 
discussed above, each bounded by a thin transition layer, before the outer 
boundary conditions on f'(y) and g(y) are satisfied. 

In  the numerical solutions given in figures 1-3 there is a single thick inviscid 
region followed by a viscous layer in which the solutions asymptotically approach 
their limiting values. Thus for the outer region the boundary-value problem to 
be solved is given by (4.29) and (4.30) with boundary conditions (4.31) as 
[+ - co, while as fs-. m the following conditions are used: 

&+o,  oO-+1 as <++a. (4.32) 

The properties of (4.29) subject to the above boundary conditions have been 
investigated in detail by Ockendon, who found that a solution exists and is 
unique apart from an arbitrary shift in <. The solution of (4.29) has also been 
studied both analytically and numerically by Kuiken (197 1).  
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a 
- 0.66000 
- 0.66437 
- 0’67040 
- 0.67748 
- 0.68223 
- 0.68555 
- 0.68795 

A * ( 4  
0.42732 
0.42396 
0.41907 
0-41339 
0.40977 
0.40746 
0.40584 

TABLE 2. Variation of A* with a from the asymptotic solution of the steady 
similarity equations as c( + acr 

A comparison of the first-order asymptotic theory for the intermediate region 
with the numerical solutions can be made once the value of the constant A has 
been determined. I n  contrast to the problem solved by Ockendon (1972)) it is not 
possible to deduce analytically the value of A using only first-order theory. It 
can be shown, however, that A is fixed by requiring that the third-order term 
fz(&), in the inner viscous region, should not become exponentially large as the 
inner variable c-+co. But to determine A a complicated integral involving go(&), 
fl(&) and gl([) must be evaluated numerically. 

For the purposes of this study it is felt that an adequate determination of A 
can be obtained by using the results of the numerical computations. From (4.2) 
and (4.11) 

$”(o;cc) = -(a-a,,)*~ +0[(a-a,,)4]. (4.33) 

Thus A can be defined by 
A = lim A*(%), 

a+acr 
(4.34) 

where A*(a) = - (a  - a,,,)Pf”(O; a). (4.35) 

Using the numerical results forf”(0; a )  given in table 1 the variat’ion of A* with a 
is easily found, and the results are given in table 2. By extrapolating the values 
of A* as a+a,, it can be deduced that A 2: 0.399. 

Comparisons of the asymptotic solutions for f ’ ( y ;  a )  and g(y;  a )  in the inter- 
mediate region with the numerical solutions are shown in figures 1 and 2. The 
agreement is quite good over the entire range of integration with the exception 
of the regions near the inner and outer boundaries, wherein the solutions must be 
adjusted in the viscous layers to accommodate the boundary conditions. 

The results of this study have shown that no finite solution of the similarity 
equations exists when a = - 0.6968. I n  addition McLeod (1970) proved that no 
solution exists when a = - 1. Thus it seems that no solutions of the boundary- 
value problem discussed in this study are possible for - I < a < - 0.6968. For 
-co < a < - 6.211 solutions with and without suction have been found 
numerically by Evans (1969). However, for - 6.211 < a < - 1, Evans was able 
to find solutions only if an appropriate amount of suction was applied at the disk. 
Ockendon’s (1972) asymptotic analysis confirmed these results for small values 
of the suction parameter, and in addition she found that solutions for non-zero 
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suction were possible for - 1 < a < - 0.6968, although numerical solutions in 
this range of a have not yet been given. 

The reasons for the breakdown of the numerical solutions without suction in 
the neighbourhood of a = - 6.211 are still not understood. Evans’ method failed 
to yield results owing to the excessive amounts of computer time needed, and the 
numerical method used in this study fails to converge for no apparent reason 
when a N - 6.211. Therefore, it appears from Ockendoii’s analysis and the 
present work that solutions of the steady similarity equations for an infinite 
rotating disk do not exist when a lies in the range - 6-21 1 < a < - 0.6968. This 
non-existence, however, has been rigorously proved, by McLeod, only for the 
single case a = - 1. 

The author is grateful to the computer centre of The Ohio State University for 
making time available on the IBM 370/165 digital computer. 
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